Increasing ryanodine receptor open probability alone does not produce arrhythmogenic calcium waves: threshold sarcoplasmic reticulum calcium content is required.
نویسندگان
چکیده
Diastolic waves of Ca(2+) release have been shown to activate delayed afterdepolarizations as well as some cardiac arrhythmias. The aim of this study was to investigate whether increasing ryanodine receptor open probability alone or in the presence of beta-adrenergic stimulation produces diastolic Ca release from the sarcoplasmic reticulum (SR). When voltage-clamped rat ventricular myocytes were exposed to caffeine (0.5 to 1.0 mmol), diastolic Ca(2+) release was seen to accompany the first few stimuli but was never observed in the steady state. We attribute the initial phase of diastolic Ca(2+) release to a decrease in the threshold SR Ca(2+) content required to activate Ca(2+) waves and its subsequent disappearance to a decrease of SR content below this threshold. Application of isoproterenol (1 micromol/L) increased the amplitude of the systolic Ca(2+) transient and also the SR Ca(2+) content but did not usually produce diastolic Ca(2+) release. Subsequent addition of caffeine, however, resulted in diastolic Ca(2+) release. We estimated the time course of recovery of SR Ca(2+) content following recovery from emptying with a high (10 mmol/L) concentration of caffeine. Diastolic Ca(2+) release recommenced only when SR content had increased back to its final level. We conclude that increasing ryanodine receptor open probability alone does not produce arrhythmogenic diastolic Ca(2+) release because of the accompanying decrease of SR Ca(2+) content. beta-Adrenergic stimulation increases SR content and thereby allows the increased ryanodine receptor open probability to produce diastolic Ca(2+) release. The implications of these results for arrhythmias associated with abnormal ryanodine receptors are discussed.
منابع مشابه
β-adrenergic stimulation increases the intra-SR Ca termination threshold for spontaneous Ca waves in cardiac myocytes.
β-adrenergic stimulation of cardiac myocytes enhances intracellular calcium cycling, which frequently associates with pro-arrhythmic Ca waves. The threshold level of free calcium in the sarcoplasmic reticulum ([Ca]SR) where waves initiate is increased during β-adrenergic stimulation. ( 1) Here, we measured [Ca]SR directly to monitor the [Ca]SR level at which spontaneous Ca waves terminated (ter...
متن کاملIntegrative Physiology In the RyR2 Mouse Model of CPVT, -Adrenergic Stimulation Induces Ca Waves by Increasing SR Ca Content and Not by Decreasing the Threshold for Ca Waves
Rationale: Mutations of the ryanodine receptor (RyR) cause catecholaminergic polymorphic ventricular tachycardia (CPVT). These mutations predispose to the generation of Ca waves and delayed afterdepolarizations during adrenergic stimulation. Ca waves occur when either sarcoplasmic reticulum (SR) Ca content is elevated above a threshold or the threshold is decreased. Which of these occurs in car...
متن کاملDantrolene prevents arrhythmogenic Ca release in heart failure
Maxwell JT, Domeier TL, Blatter LA. Dantrolene prevents arrhythmogenic Ca release in heart failure. Am J Physiol Heart Circ Physiol 302: H953–H963, 2012. First published December 16, 2011; doi:10.1152/ajpheart.00936.2011.—In heart failure (HF), arrhythmogenic Ca release and chronic Ca depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR C...
متن کاملRyanodine receptor of skeletal muscle is a gap junction-type channel.
In the sarcoplasmic reticulum membrane of skeletal muscle, the ryanodine receptor forms an aqueous pore identified as the calcium-release pathway that operates during excitation-contraction coupling. The purified ryanodine receptor channel has now been shown to have four properties usually associated with gap junction channels: (i) a large nonspecific voltage-dependent conductance consisting of...
متن کاملNitric Oxide-Dependent Activation of CaMKII Increases Diastolic Sarcoplasmic Reticulum Calcium Release in Cardiac Myocytes in Response to Adrenergic Stimulation
Spontaneous calcium waves in cardiac myocytes are caused by diastolic sarcoplasmic reticulum release (SR Ca(2+) leak) through ryanodine receptors. Beta-adrenergic (β-AR) tone is known to increase this leak through the activation of Ca-calmodulin-dependent protein kinase (CaMKII) and the subsequent phosphorylation of the ryanodine receptor. When β-AR drive is chronic, as observed in heart failur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2007